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Upper bounds to the spin correlation functions of the 
random-bond Ising model and n-vector model with 
continuously distributed random interactions 

T Horiguchi and T Morita 
Department of Engineering Science, Faculty of Engineering, Tohoku University, Sendai 
980, Japan 

Received 13 May 1981 

Abstract. We obtain upper bounds to spin correlation functions in the thermodynamic limit 
of the zero external field limit for the king model of general spins and for the n-vector model 
assuming that the exchange integrals are quenched random variables and that their 
probability distributions are continuous. The upper bounds involve, as a factor, the 
corresponding spin correlation function of a uniform ferromagnetic Ising model of spin *l, 
in which the exchange integral is determined by the distributions of the random exchange 
integrals of the original system. By using these upper bounds, we find a sufficient condition 
on the probability distributions of the exchange integrals for the disappearance of the 
ferromagnetic and antiferromagnetic states in the system. 

1. Introduction 

In a previous paper (Horiguchi and Morita 1981), we obtained upper bounds to the spin 
correlation functions in the thermodynamic limit of the zero external field limit for 
random-bond Ising models and also for a random-bond n-vector model, where the 
exchange integrals are assumed to take either the values J > 0 and -J with probabilities 
p and 1 - p, respectively, or the values J, 0 and -J with probabilities p, r and 1 - p - r, 
respectively. By applying these upper bounds to the spontaneous magnetisation, we 
proved that the systems cannot have spontaneous magnetisation in a range of concen- 
tration of the ferromagnetic bonds. 

In this paper, we extend previous studies to the systems described by the random- 
bond Ising model or by the random-bond n-vector model in which probability dis- 
tributions of the exchange integrals are continuous. We give a sufficient condition on 
the probability distributions of the exchange integrals for the disappearance of the 
ferromagnetic and antiferromagnetic states in the system. This condition is investigated 
for several special types of the probability distribution, in detail. The nature of the 
systems in which the probability distribution of the nearest-neighbour exchange 
integral is the Gaussian distribution has been studied extensively by many authors 
(Edwards and Anderson 1975, Sherrington and Kirkpatrick 1975, Klein et a1 1979 and 
so on). We show exactly that the system is not in the ferromagnetic nor in the 
antiferromagnetic state, e.g. for Ij/al< 0.49344 on the square lattice and for Ij/al C 
0.26826 on the simple cubic lattice, etc, where is the mean of the nearest-neighbour 
exchange integral and (T its standard deviation. 
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In 0 2, we prove an inequality of the spin correlation function for the random-bond 
king model with general spin S.  The random-bond n-vector model is considered in 0 3. 
The disappearance of the long-range order is studied for several kinds of probability 
distribution of the exchange integral in § 4. Concluding remarks are given in § 5 .  

2. Random-bond Ising model of general spin 

We consider the Ising model with general spin S on a finite set A of N lattice sites. The 
total number of the sites in the set A is denoted as IAl, and hence N = 1111. The system is 
assumed to be described by the Hamiltonian 

(2.1) 

where si is the spin variable for the site i and takes values -S, - S  + 1, . . . , S.  For the 
pair of sites (i, j ) ,  Jii is the exchange integral which is a quenched random variable and 
whose probability distribution is denoted by pij (Ji j ) .  Jii is independent of Jkl for the 
other pairs of sites (k, I). In the present paper, we restrict ourselves to the cases where 
Pij(- is zero or non-zero according to whether pij(lJii/) is zero or non-zero, and vice 
versa. This restriction excludes e.g. the rectangular distribution in the interval [-a, 61 
except when a = b, although this case with a # b has been investigated by Katsura 
(1977). Such a case will be studied in a separate paper by the present authors. h is the 
external field and pi is the magnetic moment of the spin on the site i. Z(i,j) denotes the 
summation over all the pairs of sites belonging to A and Zi over all the sites belonging to 
A, if no restriction is stated. l l , i , j ,  and IIi must be understood similarly. 

For a finite set A of sites in the set A, the product of the spin variables for the sites in 
the set A is denoted by s 5  : 

where p ( k )  is a positive integer not greater than 2s. We define lAl* by & E A  p ( k ) .  For 
S = 4, we have p ( k )  = 1 and then ]AI* = /AI, that is equal to the number of sites in the set 
A. The canonical average of s 2  is defined by 

where p = l/kBT, T is the absolute temperature and kB is the Boltzmann constant. The 
subscript Bo shows that the system is isolated; that is to say, Bo expresses the boundary 
condition that the boundary spins are not coupled with the outer system even if it exists. 
The same average for the system of spin k1 is denoted by (c4)g,2:k0. When all the 
products hpi are replaced by their respective absolute values Ihpil, the averages of s% 
and U% are denoted by (spA)c(g:) and (u%)c(g:’, respectively. 

In the following, we encounter the system of the Ising model of spin f 1 on a finite set 
A1 of N1 lattice sites, where NI = [All and A c A I  c A. The Hamiltonian of this system is 
assumed to be given by 

(2.4) 

where ai denotes the spin variable for the site i, and h’ and f i  are positive. Later we need 
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the following spin correlation for this system 

(2.5) 

El expresses the boundary condition that the spins which belong to A\A1, and interact 
with a spin ui for i E A1, are all plus one. 

The configurational average of a function Q{Jij} of the set {Jij} such as (&)%Lo is 
denoted by the angular brackets with suffix c 

where 

The product rI(i,j) is taken over all the pairs of sites i and j which appear in the 
Hamiltonian (2.1) or (2.4). We define the thermodynamic limit of the zero external 
field limit as follows: 

For the set { y i i }  of the fixed values yii, we define 

and at zero temperature, T = 0 (Horiguchi and Morita 1981), 

(2.10) 

(2.11) 

Now we have the following tbeorem 1, where J Y  for each pair ( i , j )  is an upper 
bound of IJijI for which &(Jii) + Pij(-Jij)  takes a non-zero value, if it exists, and is put 
equal to infinity if it does not. 

(2.12) 

Proof. We consider a subset AI of A which contains the finite set A: A c A , c A ,  
/All = N I .  We define an auxiliary Hamiltonian by 

(2.14) 
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The canonical average of the spin variable s 2  with the Hamiltonian 
( s A ) N , ( ~ , O ) , B ~ .  Then we have 

is denoted by 
p W-) 

(2.15) 

(2 .17 )  

Equation (2.15) is now expressed as 

where ai is either +1 or -1 for  EA, and +1 for i cA\hl .  We multiply 
exp(@@ X i ( i e A l ~ a i )  on both sides of (2.18), where p, h' and Cz are all positive. We then 
take the summation with respect to {cT,} over all the possible 2" sets of values of {al} and 
divide by [2 cosh(@&)lN1, and we have 

where 

(&):;til is the canonical average at the temperature l / k &  of a2 in the system which 
is composed of NI Ising spins of spin *l on the sites belonging to the set AI,  where the 
exchange integrals are pIJ,,/@, the external field h' and the magnetic moment C ; ;  see 

By using theorems 1 and 2 given by Horiguchi and Morita (1979) and Griffiths's 
(2.4)-( 2.6). 

inequality (Griffiths 1977), we have 

(2.21) I((s A )N,(~,o),Bo)cl s (I ( U A )  N ; Y , B ~  M ~ A  )N,(h,omo s (c+a )NJ,;~F ( S A  )"wn 

where (IpvJI,I)c is defined by (2.13). For the thermodynamic limit, we take the limit as 
N+oo first and then as h++O. From lemma 3 given by Horiguchi and Morita (1981), 
we have 

( 2 . 2 2 )  

for arbitrary N I  and h'. Finally, by taking the limit as N I  + co and then as h'-++O and by 
using a theorem given by Lebowitz and Martin-Lof (1972), we arrive at inequality 
(2.12). 

p I D J  p { P  J 1 p IPJz?k+)  p i(lP J I) 1 p iOJzYn)(+) 

p {(I0 J I) 1 p {PJ ,? )  
j((s% )'P'rll)cl ((TA ( S A  >(+ j 

3. Random-bond n-vector model 

We consider the n-vector model (Stanley 1974) on a finite set A of N lattice sites: 
N = lAl. We consider two possibilities for the distribution of the exchange interaction. 
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In the first case, we assume that the system is described by the Hamiltonian 

943 

where s : ~ )  is the vth component of the n-dimensional classical vector spin of unit 
magnitude for the site i ( i E  A): Z:=, ( s $ ” ) ) ~ =  1. for the pair of sites (i,j) is a 
quenched random variable whose probability distribution is denoted by p:;) (J!;’ ), and 
is independent not only of J(k:) for the other pairs of sites (IC, I) and any A but also of 
for the same pair of sites ( i , j )  and different superscript A. h is the magnitude of the 
external field, and p I”’ is the magnetic moment of the vth component of the spin on the 
site i, multiplied by the direction cosine of the external field in the v direction. In the 
second case, we assume only one variable Jii for the exchange interaction between a pair 
of sites (i, j ) ,  and the Hamiltonian is given by 

where Jij is independent of J k l  for the other pairs of sites (k ,  I) and its probability 
distribution is denoted by pii (Ji j ) .  

For the n-vector model, we use the notation s% for the following product of the spin 
variables on the sites in the finite set A of sites in the system 

(3.3) 
( k e A )  

where p v ( k )  are non-negative integers and we assume that C L l  p v ( k ) s  1. The 
canonical average of SPA is defined by 

(3.4) 

for the first case where H is given by (3.1), and by this equation with {pJi j }  in the place of 
{pJj;’} on the left-hand side for the second case where H is given by (3.2). Here Tr 
denotes 

p { P J C . U ) )  

( s ~ ) ~ $ ~ ,  = Tr e-PHs%/Tr edBH 

Tr . .=I.. . I ( n k v = l  fi dsp)) . . . , 

The integrations on the right-hand side are taken under the conditions (si”))2 = 

In the first case where the Hamiltonian is (3.1), we encounter n Ising models of spin 
f 1, each of which consists of Nl Ising spins of f 1 on the set of sites AI where A c Al c A 
and N I  = lA1l. The Hamiltonian for the vth one is given by 

11. 

Hi”’ = c J{;)&$) -64 1 ay) - J$)ai”’ (3.5) 
(Li) i (i , i)  

A 1 ) ( i e A l )  ( i = A l , j e A \ A l )  

where (TI”) is the spin variable for the site i, and $and C; are positive. We later need the 
following spin correlation function 
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where 
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(3.7) 

B1 denc -3s the boundary condition that the spins 
spin a?‘) for i E AI,  are all plus one. 

angular brackets with suffix c 

for 1 E A\Al,  which in-xact with a 

The configurational average of a function Q{J!,!”} of the set {J:;’} is denoted by 

where 

(3.9) 

The thermodynamic limits of the correlation functions are defined in the same way as in 
§ 2, namely, 

and for a fixed set {rlY’} of values y!;)  

(3.10) 

(3.11) 

andat  T=O 

In the second case, the Hamiltonian Hi given by (2.4) plays the role of (3.5), and the 
following spin correlation function appears 

where 

(3.13) 

(3.14) 

The configurational average with respect to {Jij} is defined by (2.7) and the thermo- 
dynamic limits (2.9)-(2.11) are used. 

We now have the following theorem 2. 

Theorem 2. For p, either finite or infinite, we have the following inequalities. In the first 
case when the system is described by the Hamiltonian (3.1), we have 

(3.15) 

where 
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now overestimated by unity and then we have 

(3.26) 

instead of (2.21). By the same procedure as taken in the proof of theorem 1 for the 
thermodynamic limit, we have equation (3.15) with (3.16). 

In proving (3.17) with (3.18), we change si into sl”’ and have additional summations 
or products with respect to v, in the proof of theorem 1. In place of (2.14), we have 

p { P J , y f I ( + )  p w , y )  (3.19)whereJ:;’ = J ~ ~ ( V =  1 , 2 , .  . . , n ) .  In(2.21)and(2.22),(sa),,,,,,,,,and(sA),+, 
are replaced by unity. 

4. Disappearance of the spontaneous magnetisation 

In the present section, we focus our attention on the averaged spontaneous magnetisa- 
tion only for the systems of the nearest-neighbour interactions. The system of the Ising 
model with general spin S is assumed to be described by 

(4.1) 

where si takes on -S, - S  + 1, . . . , S.  The system of the n-vector model is assumed to be 
described by 

where sI is the n-dimensional classical spin of unit magnitude for the site i and s l” ’  is its 
vth component: 

lSl1 = 1. (4.3) (1) ( 2 )  
SI = (s, , si , . . . , S l ” ’ )  

In both (4.1) and (4.2), Jlf for each nearest-neighbour pair of sites i and j is a quenched 
random variable whose probability distribution is denoted by &,,) and assumed to be 
independent of Jkl for the other nearest-neighbour pairs of sites k and 1. 

We have now from theorem 1 for the Ising model with general spin S 

I C ( S P ~ 9 c l  s Isl”IJI,l)c) (4.4) 

I((s1 ) ‘ I  )c/ s “lJi,l)C) 

and from theorem 2, especially from equation (3.17), for the n-vector model 

(4.5) ( A )  ( P J  

where 

m@J) is the spontaneous magnetisation for the ferromagnetic Ising model of spin f 1. 
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We define the spontaneous magnetisation in our systems by choosing pi = p > 0 and 
p I ’ ) = p > 0 , p I ” ) = 0 ( ~ = 2 , 3  ,..., n),asfollows 

(1) { P J . )  e,, = lim lim ((si )N,R& 
h++O N + m  

(4.7) 

(4.8) 

for the respective systems. As far as I((si)‘pJifii’)cl = 0 or I ( ( ~ i * ) ) ‘ ~ ~ ~ i ’ > ~ l =  0, we have EIS = 0 
or e,, = 0, accordingly. Thus we conclude that there is no spontaneous magnetisation in 
our systems in which the probability distribution of the exchange integrals satisfies the 
condition 

( lPiJl j l )c~J/kBTc (4.9)  

where Tc is the Curie temperature of the ferromagnetic Ising model of spin * l  with the 
exchange integral J > 0. Similar conclusions and the same condition (4.9) are obtained 
for the spontaneous long-range order parameter in any antiferromagnetic phase by 
suitably choosing the signs of pi or the values of pi”). 

We now investigate the condition (4.9) for several special types of the probability 
distribution of Jij. 

4.1. Discrete distribution of the three delta functions 

We assume that Jij takes Jo>O, 0 and -Jo with probabilities p, r and q, where 
p + q + r = 1 ,  The probability distribution is formally expressed by 

P ( J ~ ~ )  = P S ( J ~ ~  - J ~ )  + rS(Jij)+qS(Jii + J ~ ) .  (4.10) 

In this case, the mean J and the standard deviation U are given by (2p + r - l )Jo and 
El- r - (2p - 1 + r)2]1/2Jo, respectively. The left-hand side of (4.9) is calculated as 

(IPiJij l>c= f ( 1  - r )  ln[p/(l - ~ - P ) I .  (4.1 1 )  

This expression agrees with the one obtained previously (Horiguchi and Morita 1981). 
By using x =J/u, (4.11) is expressed as 

(4.12) 

This expression as a function of x =J/u is shown by the chain curve and the double 
chain curve in figure 1 for x 3 0, by setting r = 0 and r = 0.5, respectively. The critical 
values of x satisfying the equality in (4.9) are given in table 1 for several lattices. These 
are the exact lower bounds to the critical values of f/u for the ferromagnetic state. The 
lower bounds of the critical concentrations of the ferromagnetic bonds are obtainable 
through the relation 

(4.13) 

The values for r = 0 are found in table 1 of the paper by Horiguchi and Morita (1981). 
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I I I I I I 

i 
1 5 -  

J l O  

Figure 1. The graph of (IptJ,,l)c given by (4.6) for several types of probability distribution of 
Jzr The chain curve is for the discrete distribution of three delta functions with r = 0 and the 
double chain curve for r = 0 . 5 .  The full curve is for the Gaussian distribution, the 
short-dashed curve for the triangular distribution and the long-dashed curve for the 
Lorentzian distribution. The dots are for the quadrangular distribution. The right-hand 
side of (4.9) is shown by horizontal dashed lines for the hexagonal, square, triangular, sC, 

BCC and FCC lattices. 

Table 1. The lower bound to the critical value of j/u for the ferromagnetic state. is the 
mean and U is the standard deviation for the discrete distribution of the three delta functions 
(8, r = 0 and 8, r = OS), the Gaussian distribution (G), the quadrangular distribution (Q) and 
the triangular distribution (T). J is the median and U is the width for the Lorentzian 
distribution (L). 

8, r=O 8, r = 0.5 G Q T L 

Hexagonal 0.707 11 0.774 60 0.676 27 0.691 15 0.692 10 1.15502 
Square 0.455 09 0.577 35 0.493 44 0.500 46 0.494 70 0.728 70 
Triangular 0.278 12 0.377 96 0.326 91 0.316 39 0.287 57 0.440 31 
sc 0.223 51 0.308 14 0.268 26 0.255 74 0.223 07 0.352 91 
BCC 0.158 05 0.220 72 0.193 66 0.181 71 0.149 80 0.248 92 
FCC 0.102 27 0.143 87 0.126 93 0.117 88 0.092 22 0.160 83 

4.2. Gaussian distribution 

In this case, &Iji) is given by 

(4.14) 
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and the left-hand side of (4.9) is expressed as 

(Jpi~ijl)c = J G x  exp(-$x2) + x2 erf(x/ J5) (4.15) 

where f is the mean and U is the standard deviation and x = f/u. erf(x) is the error 
function (Magnus et a1 1966). The graph of (4.15) for x 3 0  is given by the full curve in 
figure 1 and the critical values of x are given in table 1. 

4.3. Quadrangular distribution 

We consider F(Jii) given by 

1/2b + d j j  lJiil s b 
otherwise. P(Jij) = { (4.16) 

1 2  4 2 6 1 / 2  The mean f and the standard deviation U are given by 2ab3/3 and (sb -@a b ) 
respectively. The left-hand side of (4.9) is expressed as 

, 

1 1 1+2ab2 (lpiJiil)c = 4ab2 ln(1-4a b )+-In - 2 1-2ab2 

(4.17) 

where x = f/u and 1x1 s 1/45 .  The graph of (4.17) f o r s  2 0 is given by dots in figure 1. 
The maximum value of (\pi,Jijl)c is In 2 at x = 1 / J 2  and very close to J /kBTc = 
0.6584789 for the hexagonal lattice. Since our calculation gives the lower bound to the 
critical value of x for the ferromagnetic state, it might be possible that there is no 
ferromagnetic or antiferromagnetic state in the system with the probability distribution 
(4.16) on the hexagonal lattice. The critical values of x are given in table 1. 

4.4. Triangular distribution 

We consider F(Jii)  given by 

-b =g J . .  -= (% + Jij)/b(b + a )  - a  
F(Jij)= (b-J j j ) /b (b-a)  a s Jij =g b 

otherwise. 
(4.18) 

The mean 7 and the standard deviation U are given by a / 3  and [ ( ~ ~ + 3 b ~ ) / 1 8 ] ~ / ~ ,  
respectively. The left-hand side of (4.9) is expressed as 

2 - x 2 - x ( 6 -  3x2)’l2 2(1-2x2)  1 (6 - 3 ~ ~ ) l ’ ~ +  3~ 
2(1 -2x2)  2 - x  2 ( 6 - 3 ~ ~ ) ’ / ~ - 3 ~  In +-ln - - (4.19) 

where x = f/u and 1x1 s 1 /45 .  The graph of (4.19) for x b 0 is g i s n  by the short-dashed 
line in figure 1, The maximum value of ((pi,Jiil)c is In 2 at x = I /  J2 .  The situation for the 
hexagonal lattice is the same as in the quadrangular distribution. The critical values of x 
are given in table 1. 
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4.5. Lorentzian distribution 

In this case, P(Ji i )  is given by 

ff F(Jii)  = 
T[(Jij -.n2+(T2] 

and the left-hand side of (4.9) is expressed as 

(4.20) 

(4.21) 

where is the median and (T is the width and x = j/v. The graph of (4.21) for x 3 0 is 
given by the long-dashed line in figure 1 and the critical values of x are given in table 1. 

5. Concluding remarks 

We considered the random-bond Ising model of general spin S and the random-bond 
n-vector model, in both of which the exchange integrals are quenched random variables 
and their probability distributions are continuous. In both systems, we proved that the 
spin correlation functions in the thermodynamic limit of the zero external field limit are 
bounded above by non-trivial bounds. Applying the results to the spin on a single site, 
we found a sufficient condition for disappearance of the spontaneous long-range order 
parameter for these systems. The condition was examined for several types of the 
probability distribution. 

Now we wish to mention an extension of the theorems obtained in the present paper 
to the configurational average of a product of spin correlation functions. For the Ising 
model of general spin S,  we have 

where AI are subsets of the set A of N lattice sites, and 
& = 17 S p )  #-& = n & k '  

k k 
( k c A i ,  i k c A I )  

p l ( k )  are positive integers not greater than 2s. S" is equal to IS/ to the power of 
Xf=l /All*, where IAIl* = X k ( k . A l )  p , ( k ) .  The thermodynamic limits 

for a fixed set {-yi j }  of values 'yii are defined by similar equations to (2.9) and (2.10). For 
the n-vector model, we have 

in place of (3.17). Here 

15.2) 
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p Y , ! ( k )  are non-negative integers and we assume that Z:=, p , r ( k ) a  1. The quantities 
appearing in both sides of equation (5.2) are defined in a similar way to (2.9) and (2.10). 
Extension of (3.15) is also possible, but we omit it here. Proofs of inequalities (5.1) and 
(5.2) are performed in the same ways as those for theorems 1 and 2. We do not 
reproduce them here. 

We apply the above inequalities (5.1) and (5.2) to the configurational average of 
products ( S , ) ' ~ ~ ~ ~ ' ( S , ) ' ~ ~ ~ J '  for the Ising model and (S~A))'p"i'(s~A'))'pJii} for the n-vector 
model discussed in $4. We have, for i # j ,  

(5.3) I ( ( s , ) ' p J ~ , ' ( s , ) { p J ~ J } ) c l  s IS1*(c.(T I I ) ((18 ( + ) ' I  J " 1) = 1 

for the n-vector model. The right-hand sides of (5.3) and (5.4) are zero for the case of 
(IpiJiil)c = t, which is possible at least for the probability distribution of Jii satisfying the 
condition P(Jii) = p(-Jii). Under the condition (lpi,Jiil)c = 0, we have 

k B T x  = N-m lim {((s.s.) 'pJfi ' )c-  1 1  ((si)'~Jii '(si){pJii ')c} = 1 - q ( 5 . 5 )  

for the king model, and 

kBTX = lim { ( ( S ! ~ ) S ~ ) ) ' ~ ' ~ ~ ' ) ~ - ( ( S ~  ( A )  ) Wii) ( s i  ( A )  ) Wii1 ) c }  
N+m j 

= 1 - q  (5.6) 

for the n-vector model, where q is the Edwards-Anderson order parameter. 
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